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In this paper, we introduce and study a Tessiet type food chain chemostat, which
contains with predator, prey and k-times’ periodically pulsed substrate. We investigate
the subsystem with substrate and prey and study the stability of the periodic solutions,
which are the boundary periodic solutions of the system. The stability analysis of the
boundary periodic solution yields an invasion threshold. By use of standard techniques
of bifurcation theory, we prove that above this threshold there are periodic oscillations
in substrate, prey, and predator. Simple cycles may give way to chaos in a cascade
of period-doubling bifurcations. Furthermore, by comparing bifurcation diagrams with
different bifurcation parameters, we can see that the impulsive system shows two kinds
of bifurcations, whose are period-doubling and period-halfing. When impulsive period
is small, there exists quasiperiodic oscillation in the impulsive system.

KEY WORDS: Tessiet growth rate, k-times’ pulsed input, chaos, quasiperiodic
oscillation

1. Introduction and the model

As well known, countless organisms live in seasonally or diurnally forced
environment, in which the populations obtain food, so the effects of this forcing
may be quite profound. Recently many papers studied chemostat model with
variations in the supply of nutrients or the washout. Chemostat with periodic
inputs are studied in [1–5], those with periodic washout rate in [6, 7], and those
with periodic input and washout in [8]. A chemostat is a common laboratory
apparatus used to culture micro-organisms. Sterile growth medium enters the
chemostat at a constant rate; the volume within the chemostat is held constant
by allowing excess medium (and microbes) to flow out through a siphon. In
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this paper we want to study a chemostat with periodically variable pulsed input.
We inoculate this chemostat with a heterotrophic bacterium that finds, in the
medium, an abundance of all necessary nutrients but one. This last nutrient is
the limiting substrate ; it is pulsed in periodically. We also allow for a holozoic
predator, e.g, a protist, that feeds on the heterotroph. The specific growth rates
of bacteria (Tessiet (1936))(see Chen [9]) and of protozoa saturate at sufficiently
high substrate and prey concentrations. The functional responses to be of the
Tessiet type. Without loss of generality, we assume that the input occur variable
at k-times’ (k ∈ N) in period τ . The model takes the form:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS

dT
= −DS − µ1

δ1

exp(−B1S)SH
(A1+S)

,

dH

dT
= µ1 exp(−B1S)SH

A1+S
− DH − µ2

δ2

exp(−B2H)HP
(A2+H)

,

dP

dT
= µ2 exp(−B2H)HP

A2+H
− DP,

⎫
⎪⎪⎬

⎪⎪⎭

T �=nτ+τi

D
, (i=1, 2, . . . , k)

�S
(

nτ
D

) = piS0, pi = τi − τi−1, T = nτ+τi

D
, (i = 1, 2, . . . , k),

(1.1)

where τ is the period of the impulsive effect and τ0 = 0 < τ1 < τ2 < · · · < τk = τ

are the k-times of the impulsive effects in per period τ . The state variables S, H,

and P represent the concentration of limiting substrate, prey, and predator. D is
the dilution rate; µ1 and µ2 are the uptake and predation constance of the prey
and predator; δ1 is the yield of prey per unit mass of substrate; δ2 is the biomass
yield of predator per unit mass of prey; Ai, Bi(i = 1, 2) relate with the func-
tional response of prey and predator; τ

D
is the period of the pulsing; τS0 is the

amount of limiting substrate pulsed each τ
D

. DS0 units of substrate are added,
on average, per unit of time. n ∈ N , N is the set of all non-negative integers.

The theory of impulsive differential equation appears as a natural descrip-
tion of several real processes subject to certain perturbations whose duration is
negligible in comparison with the duration of the process. Recently, equations
of this kind are found in a almost every domain of applied sciences. Numerous
examples are given in Bainov’s and his collaborator’s books [10, 11]. Some impul-
sive differential equations have been recently introduced in population dynamics
in relation to: impulsive birth [12], impulsive vaccination [13, 14], chemotherapeu-
tic treatment of disease [15] and population ecology [16, 17].

There are advantages in analyzing dimensionless equations. We treat the
reciprocal of the dilution rate as natural measure of time:

x ≡ S
S0

, y ≡ H
δ1S0

, z ≡ P
δ1δ2S0

, t ≡ DT.

After some algebra, this yields
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt

= −x − m1 exp(−b1x)xy
a1+x

,
dy
dt

= m1 exp(−b1x)xy
a1+x

− y − m2 exp(−b2y)yz
a2+y

,
dz
dt

= m2 exp(−b2y)yz
a2+y

− z,

⎫
⎪⎬

⎪⎭
t �= nτ + τi, (i = 1, 2, . . . , k)

x((nτ + τi)
+) = x(nτ + τi) + pi, t = nτ + τi, (i = 1, 2, . . . , k),

(1.2)
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with

m1 = µ1
D

, a1 = A1
S0

, b1 = B1S0;
m2 = µ2

D
, a2 = A2

δ1S0
, b2 = B2δ1S0.

The organizations of the paper are as following. In next section, we
investigate the existence and stability of the periodic solutions of the impulsive
subsystem with substrate and prey. In section 3, we study the locally stability of
the boundary periodic solution of the system and obtain the threshold of the
invasion of the predator. By use of standard techniques of bifurcation theory, we
prove that above this threshold there are periodic oscillations in substrate, prey
and predator. In section 4, the bifurcation diagrams of different coefficients show
that with increasing the bifurcation parameters, the system experiences following
two kinds of processes: (1) periodic solution → periodic doubling cascade →
chaos → periodic halfing cascade → periodic solution , (2) periodic solution →
periodic doubling cascade → chaos.

2. Behavior of the substrate bacterium subsystem

In the absence of the protozan predator, system (1.2) reduces to
⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= −x − m1 exp(−b1x)xy

a1+x
,

dy

dt
= m1 exp(−b1x)xy

a1+x
− y,

⎫
⎬

⎭
t �= nτ + τi, (i = 1, 2, . . . , k)

x((nτ + τi)
+) = x(nτ + τi) + pi, t = nτ + τi, (i = 1, 2, . . . , k).

(2.1)

This nonlinear system has simple periodic solutions. For our purpose, we
present these solutions in this sections.

If we add the first and second equations of the system (2.1), we have
d(x+y)

dt
= −(x + y). If we take variable changes s = x + y then the system (2.1)

can be rewritten as

{
ds

dt
= −s, t �= nτ + τi, (i = 1, 2, . . . , k)

s(t+) = s(t) + pi, s(0) > 0, t = nτ + τi, (i = 1, 2, . . . , k).
(2.2)

For the system (2.2), we have the following lemma 2.1.

Lemma 2.1. The subsystem (2.2) has a positive periodic solution s̃(t) and for
every solution s(t) of (2.2) we have |s(t) − s̃(t)| → 0 as t → ∞, where
{

s̃(t) = s+
i exp(−(t − nτ − τi−1)), t ∈ (nτ + τi−1, nτ + τi],

s̃(0) = s+
0 =

∑k
j=1 pj exp(−τ+τj )

1−exp(−τ)
, si = s+

i−1 exp(−pi). i = 1, 2, . . . , k.
(2.3)
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Proof. Suppose s(t, s0) is a solution of equation (2.2), with initial condition
s0 ∈ [0, +∞). We have

s(t, s0) = s((nτ + τi−1)
+) exp(−(t − nτ − τi), t ∈ (nτ + τi−1, nτ + τi],

s(t+) = s(t) + pi, t = nτ + τi,
(2.4)

for i = 1, 2, . . . , k. We introduce a function U(s0) = s(t, y0). For (2.4), we have
the following properties:

(i) 0 < s(t, s0) < ∞, t ∈ (0, ∞) is piecewise continuous function;

(ii) The function U(s0) = s(t, s0), s0 ∈ (0, ∞) is a increasing function.

By direct calculating, we know that the solution s̃(t) in (2.3) is a τ -period
solution of the equation (2.2); according to (ii), we can see that the solution s̃(t)

is a unique period solution of (2.2). The multiplier µs of s̃(t) is

µs := exp(−τ) < 1,

we can see that s̃(t) (t ∈ (0, ∞)) is globally asymptotically stable. We complete
the proof.

By the lemma 2.1, the following lemma is obvious.

Lemma 2.2. Let (x(t), y(t)) be any solution of system (2.1) with initial condition
x(0) � 0, y(0) > 0, then limt→∞ |x(t) + y(t) − s̃(t)| = 0.

The lemma 2.2 says that the periodic solution s̃(t) is uniquely invariant
manifold of the system (2.1).

Theorem 2.1. For the system (2.1), we denote

m∗
1 := τ

∫ τ

0
s̃(l) exp(−b1 s̃(l)

a1+s̃(l)
dl

.

(1) If m1 < m∗
1, then the system (2.1) has a unique globally asymptotically

stable positive τ−periodic solution (xe(t), ye(t)), where

xe(t) = 1, ye(t) = 0;
(2) If m1 > m∗

1, then the system (2.1) has a unique globally asymptoti-
cally stable positive τ -periodic solution (xs(t), ys(t)) and the τ -periodic
solution (xe(t), ye(t)) is unstable. The τ -period positive solution ys(t)

satisfies

1
τ

∫ τ

0

m1s̃(l) exp(−b1s̃(l))

a1 + s̃(l)
dl = 1.
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Proof. By lemma 2.1, we can consider the system (2.1) in its stable invariant
manifold s̃(t), that is

dy

dt
= m1(s̃(t)−y) exp(−b1(s̃(t)−y))y

a1+(s̃(t)−y)
− y, 0 � y0 � s̃(0). (2.5)

Suppose y(t, y0) is a solution of equation (2.5), with initial condition y0∈[0, s̃(0)].
We have

y(t, y0) = y(nτ) exp(
∫ t

nτ
(
m1(s̃(l)−y(l,y0)) exp(−b1(s̃(l)−y(l,y0)))

a1+(s̃(l)−y(l,y0))
− 1)dl),

y(0) = y0, t ∈ (nτ, (n + 1)τ ]. (2.6)

For (2.6), we have the following properties:

(i) The function G(y0) = y(t, y0), y0 ∈ (0, s̃(0)] is a increasing function;

(ii) 0 < y(t, y0) < s̃(t), t ∈ (0, ∞) is continuous function;

(iii) y(t, 0) = 0, t ∈ (0, ∞) is a solution .

�
The periodic solutions of (2.5) satisfy the following equation

y0 = y0 exp(
∫ τ

0 (
m1(s̃(l)−y(l,y0)) exp(−b1(s̃(l)−y(l,y0))

a1+(s̃(l)−y(l,y0))
− 1)dl). (2.7)

By (i),(ii), and (iii), we know that if 1
τ

∫ τ

0
m1 s̃(l) exp(−b1 s̃(l))

a1+s̃(l)
dl > 1, the equation

(2.6) has a unique solution in (0, s̃(0)]; otherwise, it has no solution in (0, s̃(0)].
If m1 < m∗

1, it is obvious that

y(t) � y(0) exp((
∫ t

0
m1 s̃(l) exp(−b1 s̃(l))

a1+s̃(l)
dl − 1)t). (2.8)

By
∫ τ

0
m1 s̃(l) exp(−b1 s̃(l))

a1+s̃(l)
dl − τ < 0, we obtain that y(t) tends exponentially to zero

as t → +∞. Considering the system (2.2), we have x(t) = s(t) − y(t). By lemma
2.2, we have limt→∞ |x(t) − s̃(t)| = 0. If m1 < m∗

1, then the equation (2.5) has
stable periodic solution ye(t) = 0. By lemma 2.2, we have limt→∞ |x(t)− s̃(t)|=0.
We have proved in (1).

If m1 > m∗
1, then the equation (2.5) has uniquely positive periodic solution.

We denote this positive periodic solution

ys(t) = y(t, y∗
0 ), xs(t) = s̃(t) − y(t, y∗

0 ),

which satisfies the following equation

∫ τ

0
m1(s̃(l)−ys(l)) exp(−b1(s̃(l)−ys(l)))dl

a1+(s̃(l)−ys(l))
= τ. (2.9)

We denote y∗
0 := ys(0).
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For proving the stability of the periodic solution ys(t), we define a function
F(y(t, y0)) : (t, y0) → R, ∈ [0, ∞) × [0, s̃(0)] as following:

F(y(t, y0)) = ∫ t

0
m1(s̃(l)−y(l,y0)) exp(−b1(s̃(l)−y(l,y0)))

a1+(s̃(l)−y(l,y0))
dl − t.

Noticing equation (2.5), we have

F(y(τ, y0)) = ln(
y(τ,y0)

y0
), y0 ∈ (0, s̃(0)]. (2.10)

It is obvious that F(y(nτ, y∗
0 ))) = 0.

For any y0 ∈ (0, s̃(0)), by the theorem 2.10 [10] on the differentiability of
the solutions on the initial values, ∂y(t,y0)

∂y0
exists. Furthermore, ∂y(t,y0)

∂y0
� 0, t ∈

(0, ∞) is hold (otherwise, there exist t0 > 0, 0 < y1 < y2 < s̃(0) such that
y(t0, y1) = y(t0, y2), that is a contradiction with the different flows of system
(2.5) not to intersect). And we can have s̃(l) > y(l, y0)), for l ∈ [0, τ ]. So we
obtain that

d(F (y(τ,y0)))

dy0
< 0. (2.11)

So F(y(τ, y0)), y0 ∈ [0, s̃(0)] is monotonously decreasing continuous function.
Now we set 0 < ε < y∗

0 < s̃(0). According to (2.11), we have that

ln y(τ, y0) − ln y0 < 0, if y∗
0 < y0 < s̃(0),

ln y(τ, y0) − ln y0 = 0, if y0 = y∗
0 ,

ln y(τ, y0) − ln y0 > 0, if ε < y0 < y∗
0 .

(2.12)

Furthermore, we obtain the following equations

y0 > y(τ, y0) > · · · > y(nτ, y0) > y∗
0 , if y∗

0 < y0 � s̃(0),

y0 < y(τ, y0) < · · · < y(nτ, y0) < y∗
0 , if ε � y0 < y∗

0 .
(2.13)

Set y0 ∈ (0, s̃(0)]. According to (2.12), we suppose that

lim
n→∞ y(nτ, y0) = a.

We shall prove that the solution y(t, a) is τ−periodic. We note that the
functions yn(t) = y(t + nτ, y0), due to the τ−periodicity of equation (2.5), are
also its solutions and yn(0) → a as n → ∞. By the continuous dependence of
the solutions on the initial values we have that y(τ, a) = limn→∞ yn(τ ) = a.
Hence the solution y(t, a) is τ−periodic. The periodic solution y(t, y∗

0 ) is unique,
so a = y∗

0 .
Let ε > 0 be given. By the theorem 2.9 [10] on the continuous dependence

of the solutions on the initial values, there exists a δ > 0 such that

|y(t, y0) − y(t, y∗
0 )| < ε,
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if |y0 − y∗
0 | < δ and 0 � t � τ . Choose n1 > 0 so that |y(nτ, y0) − y∗

0 | < δ for
n > n1. Then |y(t, y0) − y(t, y∗

0 )| < ε for t > nτ which proves that

lim
n→∞ |y(t, y0) − y(t, y∗

0 )| = 0, y0 ∈ (0, s̃(0)].

For the system (2.1), by lemma 2.2 we obtain that for any solution
(x(t), y(t)) with initial condition x(0) � 0, y(0) > 0, |x − xs | → 0, |y − ys | → 0
as t → ∞.

From the τ -period solution ys being globally asymptotically stable, we can
obtain that the multiplier µ of ys , which satisfies

µ = exp
(

−
∫ τ

0

m1ys(l) exp(−b1xs(l))(a1−a1b1xs(l)−b1x
2
s (l))

(a1 + xs(l))2
dl

)

<1, (2.14)

where we have used (2.7). This conclusion will be used in the section 3. We have
proved (2).

3. Bifurcation of the system

In order to investigate the invasion of the predator of system (1.2), we add
the first, second and third equations of it and take variable changes s = x+y+z,
then we obtain the following system

{
ds

dt
= −s, t �= nτ + τi, (i = 1, 2, . . . , k)

s(t+) = s(t) + pi, s(0) > 0, t = nτ + τi, (i = 1, 2, . . . , k).

By the lemma 2.1, the following lemma is obvious.

Lemma 3.1. Let (x(t), y(t), z(t)) be any solution of system (1.2) with X(0) > 0,
then

lim
t→∞ |x(t) + y(t) + z(t) − s̃(t)| = 0. (3.1)

The lemma 3.1 says that the periodic solution s̃(t) is an invariant manifold
of the system (1.2).

For convenance, in the following discussing if m1 > m∗
1, we denote that

m∗
2 := τ

∫ τ

0
ys(l) exp(−b2ys(l)

a1+ys(l)
dl

Theorem 3.1. Let (x(t), y(t), z(t)) be any solution of system (1.2) with X(0) > 0.

(1) If m1 < m∗
1, then the system (1.2) has a unique globally asymptotically

stable positive τ−periodic solution (xe(t), ye(t), 0).
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(2) If m1 > m∗
1 and m2 < m∗

2, then the system (1.2) has a unique globally
asymptotically stable boundary τ−periodic solution (xs(t), ys(t), 0) is
globally asymptotical stable.

(3) If m1>m∗
1 and m2>m∗

2, then the periodic boundary solution
(s̃(t) − ys(t), ys(t), 0) of the system (1.2) is unstable.

Proof. The proof of (1) is easy, we want to prove (2) and (3). The local sta-
bility of periodic solution (xs(t), ys(t), 0) may be determined by considering the
behavior of small amplitude perturbations of the solution. Define

x(t) = u(t) + xs(t), y(t) = v(t) + ys(t), z(t) = w(t)

there may be written

⎛

⎝
u(t)

v(t)

w(t)

⎞

⎠ = Φi (t)

⎛

⎝
u(τ+

i−1)

v(τ+
i−1)

w(τ+
i−1)

⎞

⎠ τi−1 < t < τi, (i = 1, 2, . . . , k),

where Φi (t) satisfies

dΦi

dt
=

⎛

⎜
⎜
⎝

−1 − m1b1a1xsys exp(−b1xs)

(a1+xs)2 −m1xs exp(−b1xs)
a1+xs

0
m1b1a1xsys exp(−b1xs)

(a1+xs)2
m1xs exp(−b1xs)

a1+xs
− 1 −m2ys exp(−b2ys)

a2+ys

0 0 m2ys exp(−b2ys)
a2+ys

− 1

⎞

⎟
⎟
⎠ Φi(t)

and Φi (τi−1) = I , the identity matrix. Hence the fundamental solution matrix is

Φi(τi) =
⎛

⎝

φ1i(τi) φ2i(τi) ∗
φ3i(τi) φ4i(τi) ∗∗

0 0 exp(
∫ τi

τi−1
(
m2ys(l) exp(−b2ys(l))

a2+ys(l)
− 1)dl)

⎞

⎠ . (3.2)

It is no need to give the exact form of (∗) and (∗∗) as it is not required in
the analysis that follows. The linearization of impulsive subsystem (2.3) become

⎛

⎝
u(τ+

i )

v(τ+
i )

w(τ+
i )

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
u(τi)

v(τi)

w(τi)

⎞

⎠ .

We denote that

Mi =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ Φi(τ ), (i = 1, 2, . . . , k).
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Hence, we obtain the fundamental solution matrix M is

M = Mk · · ·M2M1 =
⎛

⎝

φ11(τ ) φ12(τ ) ∗
φ21(τ ) φ22(τ ) ∗∗

0 0 exp(
∫ τ

0 (
m2ys(l) exp(−b2ys(l))

a2+ys(l)
− 1)dl)

⎞

⎠ .

The eigenvalues of the matrix M are µ3 = exp(
∫ τ

0 (m2ys(l) − 1)dl) and the
eigenvalues µ1, µ2 of the following matrix

(
φ11(τ ) φ12(τ )

φ21(τ ) φ22(τ )

)

. (3.3)

The µ1, µ2 are also the multipliers the locally linearizing system of the sys-
tem (2.1) provided with m > m∗

1 at the asymptotically stable periodic solution
(xs(t), ys(t)), according to Theorem 2.1, we have that µ1 < 1, µ2 = µ < 1.

If 1
τ

∫ τ

0
m1 s̃(l) exp(−b1 s̃(l))

a1+s̃(l)
dl > 1 and 1

τ

∫ τ

0
m2 exp(−b1ys(l))

a2+ys(l)
dl < 1, then we get

that µ3 = exp(
∫ τ

0 (
m2ys(l) exp(−b2ys(l))

a2+ys(l)
− 1)dl) < 1, the boundary periodic solution

(xs(t), ys(t), 0) of the system (1.2) is locally asymptotically stable. We have that

z(t) � z(0) exp(
∫ t

0 (
m2ys(l) exp(−b2ys(l))

a2+ys(l)
− 1)dl),

hence we obtain that for any solution (x(t), y(t), z(t)) with X(0) > 0, z(t) → 0
as t → ∞. By limt→∞ |x(t) + y(t) + z(t) − s̃(t)| = 0, we have limt→∞ |x(t) +
y(t) − s̃(t)| = 0. Now using theorem 2.1, we have limt→∞ |y(t) − ys(t)| = 0 and
limt→∞ |x(t) − xs(t)| = 0.

If 1
τ

∫ τ

0
m1 s̃(l) exp(−b1 s̃(l))

a1+s̃(l)
dl > 1 and 1

τ

∫ τ

0
m2 exp(−b1ys(l))

a2+ys(l)
dl > 1, then we obtain

that µ3 = exp(
∫ τ

0 (
m2ys(l) exp(−b2ys(l))

a2+ys(l)
− 1)dl) > 1, the boundary periodic solution

(xs(t), ys(t), 0) of the system (1.2) is unstable. We complete the proof.
Let B denote the Banach space of piecewise continuous, τ−periodic func-

tions N : [0, τ ] → R2 and have points of discontinuity τi, (i=1, 2, . . . , k), where
they are continuous from the left. In the set B introduce the norm |N |0 =
sup0�t�τ |N(t)| with which B becomes a Banach space with the uniform conver-
gence topology.

For convenience, just like [18] we introduce the following lemma 3.2 and
3.3.

Lemma 3.2. Suppose aij ∈ B. (a) If
∫ τ

0 a22(s)ds �= 0,
∫ τ

0 a11(s)ds �= 0, then the
linear homogenous system

⎧
⎨

⎩

dy1
dt

= a11y1 + a12y2,

dy2
dt

= a22y2,
(3.4)
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has no nontrivial solution in B × B. In this case the nonhomogeneous system
⎧
⎨

⎩

dx1
dt

= a11x1 + a12x2 + f1,

dx2
dt

= a22x2 + f2,
(3.5)

has, for every (f1, f2) ∈ B × B, a unique solution (x1, x2) ∈ B × B and the
operator L : B×B → B×B defined by (x1, x2) = L(f1, f2) is linear and compact.
If we define that x′

2 = a22x2 + f2 has a unique solution x2 ∈ B and the operator
L2 : B → B defined by x2 = L2f2 is linear and compact. Furthermore, x′

1 =
a11x1 + f3 for f3 ∈ B has a unique solution (since

∫ τ

0 a11(s)ds �= 0) in B and
x1 = L1f3 defines a linear, compact operator L1 : B → B. Then we have

L(f1, f2) ≡ (L1(a12L2f2 + f1), L2f2). (3.6)

(b) If
∫ τ

0 a22(s)ds = 0,
∫ τ

0 a11(s)ds �= 0, then (3.4) has exactly one inde-
pendent solution in B × B.

Lemma 3.3. Suppose a ∈ B and 1
τ

∫ τ

0 a(l)dl = 0. Then x′ = ax + f, f ∈ B, has a
solution x ∈ B if and only if 1

τ

∫ τ

0 f (l)(exp(− ∫ l

0 a(s)ds))dl = 0.

By the lemma 3.1, in its invariant manifold s̃ = x(t)+y(t)+z(t), the system
(1.2) reduce to a equivalently nonautonomous system as following

⎧
⎪⎪⎨

⎪⎪⎩

dy

dt
= m1 exp(−b1(s̃(t)−y−z))(s̃(t)−y−z)y

a1+(s̃(t)−y−z)
− y − m2 exp(−b2y)yz

a2+y
,

dz

dt
= m2 exp(−b2y)yz

a2+y
− z,

y(0) > 0, z(0) � 0, y(0) + z(0) � s̃(0).

(3.7)

If m1 > m∗
1, for the system (3.7), by the theorem 3.1 the boundary periodic

solution (ys(t), 0) is locally asymptotically stable provided with m2 < m∗
2, and it

is unstable provided with m2 > m∗
2, hence the value m∗

2 practises as a bifurcation
threshold. For the system (3.7), we have the following results.

Theorem 3.2. For the system (3.7), m1 > m∗
1 and a2 − a2b2ys − b2y

2
s � 0 for t ∈

(0, τ ] hold, then there exists a constance λ0 > 0, such that for each m2∈(m∗
2, m

∗
2+

λ0), there exists a solution (y, z) ∈ B × B of (3.7) satisfying 0 < y < ys, z > 0
and x = s̃(t) − y − z > 0 for all t > 0. Hence, the system (1.2) has a positive
τ−periodic solution (s̃(t) − y − z, y, z).

Proof. Let x1 = y − ys(t), x2 = z in (3.7), then
⎧
⎨

⎩

dx1
dt

= F11(xs, ys)x1 − F12(m2, xs, ys)x2 + g1(x1, x2),

dx2
dt

= F22(m2, ys)x2 + g2(x1, x2).
(3.8)
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where

F11(xs, ys) = m1xs exp(−b1xs)
a1+xs

− 1 − m1ys exp(−b1xs)(a1−a1b1xs−b1x
2
s )

(a1+xs)2 ,

F12(m2, xs, ys) = m1ys exp(−b1xs)(a1−a1b1xs−b1x
2
s )

(a1+xs)2 + m2ys exp(−b2ys)
a2+ys

,

F22(m2, ys) = m2ys exp(−b2ys)
a2+ys

− 1.

We know that 1
τ

∫ τ

0
m2ys(l)
a2+ys(l)

dl − 1 �= 0, by the lemma 4.3, using L we can
equivalently write the system (3.8) as the operator equation

(x1, x2) = L∗(x1, x2) + G(x1, x2), (3.9)

where

G(x1, x2) = (L1(−F12(xs, ys)g2(x1, x2) + g1(x1, x2)), L2g2(x1, x2)).

Here L∗ : B × B → B × B is linear and compact and G:B × B→B×B

is continuous and compact (since L1 and L2 are compact) and satisfies G =
o(|(x1, x2)|0) near (0,0). A nontrivial solution (x1, x2) �= (0, 0) for some m2 > 1
yields a solution (y, z) = (ys + x1, x2) of the system (3.7). Solutions (y, z) �=
(ys, 0) will be called nontrivial solutions of system (3.7).

We apply well-known local bifurcation techniques to (3.9). As is well
known, bifurcation can occur only at the nontrivial solution of the linearized
problem

(y1, y2) = L∗(y1, y2), m2 > 0. (3.10)

If (y1, y2) ∈ B ×B is a solution of (3.10) for some m2 > 0, then by the very
manner in which L∗ was defined, (y1, y2) solves the system

⎧
⎨

⎩

dy1
dt

= F11(xs, ys)y1 − F12(xs, ys)y2,

dy2
dt

= F22(xs, ys)y2.
(3.11)

and conversely. Using Lemma 3.2 (b), we see that (3.11) and hence (3.10) has
one nontrivial solution in B×B if and only if 1

τ

∫ τ

0
m∗

2ys(l) exp(−b2ys(l)

a2+ys(l)
dl = 1. Hence

there exists a continuum C = {(m2; x1, x2)} ⊆ (0, ∞)×B ×B nontrivial solutions
of (3.10) such that the closure C̄ contains (m∗

2; 0, 0). This continuum gives rise to
a continuum C1 = {(m2; y, z)} ⊆ (0, ∞) × B × B of the solutions of (3.7) whose
closure C̄1 contains the bifurcation point (m∗

2; ys, 0).
To see that solutions in C1 correspond to solutions (y, z) of (3.7), we inves-

tigate the nature of the continuum C near the bifurcation point (m∗
2; 0, 0) by

expending m2 and (x1, x2) in Lyapunov–Schmidt series:

m2 = m∗
2 + λε + · · · ,

x1 = x11ε + x12ε
2 + · · · ,

x2 = x21ε + x22ε
2 + · · · .
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for xij ∈ B where ε is a small parameter. If we substitute these series into the
differential system (3.7) and equate coefficients of ε and ε2 we find that

{
x′

11 = F11(xs, ys)x11 − F12(m
∗
2, xs, ys)x21,

x′
21 = F22(m

∗
2, ys)x21.

and

{
x′

12 = F11(xs, ys)x12 − F12(m
∗
2, xs, ys)x22 + G12(x11, x11, λ),

x′
22 = F22(m

∗
2, xs, ys)x22 + x21 exp(−b2ys)

a2+ys
(λys + m∗

2x11(a2−a2b2ys−b2y
2
s )

a2+ys
),

respectively. Thus, (x11, x21) ∈ B ×B must be a solution of (3.10). We choose the
specific solution satisfying the initial conditions x21(0) = 1. Then

x21 = exp(
∫ t

0 (
m∗

2ys(l)

a2+ys(l)
− 1)dl) > 0.

Moreover x11<0 for all t
(
since

∫ τ

0 (m1xs exp(−b1xs)/a1+xs−1−
m1ys exp(−b1xs)(a1−a1b1xs−b1x

2
s )

(a1+xs)2

)
dl = − ∫ τ

0 (
m1ys exp(−b1xs)(a1−a1b1xs−b1x

2
s )

(a1+xs)2 dl < 0 implies
that the Green’s function for first equation in (4.11) is positive). Using Lemma
3.3 we find that

λ = −
∫ τ

0
m∗

2x21(t)x11(t) exp(−b2ys (t))(a2−a2b2ys (t)−b2y2
s (t))

(a2+ys (t))2
exp(

∫ t
0 (

m2ys (l) exp(−b2ys (l))

a2+ys (l)
−1)dl)dt

∫ τ
0

exp(−b2ys (t))ys (t)x21(t)

a2+ys (t)
exp(

∫ t
0 (

m2ys (l) exp(−b2ys (l))

a2+ys (l)
−1)dl)dt

> 0,

provided with a2 − a2b2ys − b2y
2
s � 0. Thus, we see that near the bifurcation

point (m∗
2; 0, 0) (say, for 0 < |m2 − m∗

2| = λ|ε| < λ0 ) the continuum C has two
(subcontinua) branches corresponding to ε < 0, ε > 0, respectively:

C+ = {(m2; x1, x2) : m∗
2 < m2 < m∗

2 + λ0, x1 < 0, x2 > 0},
C− = {(m2; x1, x2) : m∗

2 − λ0 < m2 < m∗
2, x1 > 0, x2 < 0}.

The solution is on C+ which prove the theorem, since λ > 0 is equivalent
to m2 > m∗

2. We have left only to show that y = x1 + ys > 0 for all t. This is
easy, for if λ0 is small, then y is near ys in the sup norm of B; thus since ys is
bounded away from zero, so is y. At same time, by theorem 3.1, for the system
(3.3), y is near ys means that x is near xs ; thus x = s̃ − y − z > 0. We notice
that the periodic solution (y, z) is continuous τ−periodic. So x = s̃ − y − z is
piecewise continuous and τ−periodic. We complete the proof.
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Figure 1. Bifurcation diagrams of system (1.2) with m2 = 8, a1 = 1, b1 = 0.1, a2 = 0.9, b2 =
0.2, τ1 = 0.6τ, τ = 8, 2 < m1 � 18.

4. Chemostat chaos

In this section, we will analyze the complexity of the impulsive sys-
tem (2.3). If 1

τ

∫ τ

0
m1 s̃(l) exp(−b1 s̃(l))

a1+s̃(l)
dl>1, for the system (4.7), by the theorem

4.1 the boundary periodic solution (ys(t), 0) is locally asymptotically stable

provided with the following equation 1
τ

∫ τ

0
m2ys(l) exp(−b2ys(l))

a2+ys(l)
dl<1, and it is

unstable provided with the condition 1
τ

∫ τ

0
m2ys(l) exp(−b2ys(l))

a2+ys(l)
dl>1, hence the value

m∗
2 = τ/

∫ τ

0
ys(l) exp(−b2ys(l))

a2+ys(l)
dl practises as a bifurcation threshold.

We want to investigate the influence of m1. Set m2=8, a1=1, b1=0.1, a2=0.9,

b2=0.2, τ1=0.6τ, τ=8, 2 < m1 � 18. The influences of m1 may be documented by
stroboscopically sampling some of the variables over a range of m1 values. We
numerically integrated system (1.2) for 500 pulsing cycles at each value of m1.
For each m1, we plotted the last 200 measures of the prey y and the predator z.
Since we sampled at the forcing period, periodic solutions of period τ appear as
fixed points, periodic solutions of period 2τ appear as two cycles, and so forth.
The resulting bifurcation diagrams (figure 1) clear show that: with increasing m1
from 2 to 18, the system experiences process of cycles → periodic doubling cas-
cade (figure 2)→chaos(figure 3) → periodic halfing cascade → cycles→ periodic
doubling cascade → chaos → periodic halfing cascade (figure 4)→ cycles, which
is characterized by (1) doubling bifurcations, (2) period halfing.

When m1 is small (m1<q0≈3), the solution (s̃(t), 0, 0) is stable. When
m1>q0, the prey begins invade the system and the solution (xs, ys, 0) is stable
if m1<q1 ≈ 3.76. When m1>q1, the predator begins invade and a stable posi-
tive period solution is bifurcated from (xs, ys, 0) if m1>q1. However, when m1 >

q2 ≈ 4.36, the stability of τ−periodic solution is destroyed and 2τ−periodic
solution occurs and is stable if m1<q3 ≈ 4.79. When m1>q3, it is uns-
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Figure 2. Doubling bifurcation. (a)–(d) Phase portraits of τ , 2τ , 4τ , and 8τ -period solutions for
m1 = 4.18, 4.58, 4.8, and 4.98, respectively.

table and there is a cascade of period doubling bifurcations (to see figure 2)
leading to chaos (to see figure 3). Continuously increasing m1, it is followed by a
cascade of periodic halving bifurcations from chaos to cycles (figure 4). A typical
chaotic oscillation is captured when m1 = 5.83. This periodic-doubling route to
chaos is the hallmark of the logistic and Ricker maps [19, 20] and has been stu-
died extensively by Mathematicians [21]. Periodic halving is the flip bifurcation
in the opposite direction, which is also observed in [22].

We want to investigate the influence of m2. Set m1=6, a1=1, b1=0.2, a2=0.9,

b2=0.1, τ1=0.6τ, τ = 8, and 0.8 < m2 � 21. We numerically integrated system
(1.2) for 500 pulsing cycles at each value of m2. For each m2, we plotted the last
200 stroboscopic measures of the prey y and the predator z. The resulting bifur-
cation diagrams (figure 5) show: (1) the invasion of predator at m∗

2 ≈ 4.93, (2)
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Figure 3. Strange attractors: the phase portraits of system (1.2) of m1 = 5.83; the time series of
y, z solution on the right sides are corresponding with the portraits on the left with initial values
x0 = 1, y0 = 1, z0 = 0.5.

the first period-doubling at m2 ≈ 6.7, (3) a cascade of period doubling, (4) chao-
tic solutions, and (5) periodic windows within the chaotic regime.

Comparable changes occur with an increase in the pulse period τ . Set m1 =
6, m2=8, a1=1, b1=0.1, a2=0.9, b2=0.2, τ1 = 0.6τ and 0.1 < τ � 11.8. The resul-
ting bifurcation diagrams (figure 6) clear show that: with increasing τ from 0.1
to 11.8, the system experiences process of quasiperiodic oscillation → cycles →
periodic doubling cascade →chaos → periodic halfing cascade → cycles. When
impulsive period τ is small, there exists quasiperiodic oscillation in impulsive
system. figure 7 shows a phase portrait of quasiperiodic oscillating solution at
τ = 0.2.
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Figure 4. Halving bifurcation. (a)–(d) Phase portraits of 8τ , 4τ , 2τ , and τ -period solutions for
m1 = 11.68, 11.8, 13.8, and 18.8, respectively.

Figure 5. Bifurcation diagrams of system (1.2) with m1=6, a1=1, b1=0.2, a2=0.9, b2=0.1,

τ1 = 0.6τ, τ = 8, and 2 < m2 � 22 and initial values x0 = 0.2, y0 = 0.1, z0 = 0.05.
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Figure 6. Bifurcation diagrams of system (1.2) with m1 = 6, m2 = 8, a1 = 1, b1 = 0.1, a2 =
0.9, b2 = 0.2, τ1 = 0.6τ , and 0.2 < τ � 18 and initial values x0 = 0.2, y0 = 0.1, z0 = 0.05.

Figure 7. Quasiperiodic oscillation at τ = 0.2 and the time series of x, y, z solution with initial
values x0 = 1, y0 = 1, z0 = 0.5.
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5. Conclusions

In this paper, we introduce and study a model of a Tessiet type food
chain chemostat with pulsed substrate. First we find the invasion threshold
of the prey, which is m∗

1 = τ
∫ τ

0
m1 s̃(l) exp(−b1 s̃(l)

a1+s̃(l)
dl

. If m1<m∗
1, the periodic per-

iodic solution (s̃(t), 0, 0) is globally asymptotically stable and if m1>m∗
1, the

prey starts to invade the system. Furthermore, by using Floquet theorem and
small amplitude perturbation skills, we have proved that if m1>m∗

1, there exists
m∗

2= τ
∫ τ

0
m2ys (l) exp(−b2ys (l)

a1+ys (l)
dl

to play as the invasion threshold of the predator, that is

to say, if m2 < m∗
2 the boundary solution (xs, ys, 0) is globally asymptotically

stable and if m2 > m∗
2 the solution (xs, ys, 0) is unstable.

Choosing different coefficients m1, m2 and pulsed period τ as bifurcation
parameters, we have obtained bifurcation diagrams (figures 1,5,6). Bifurcation
diagrams have shown that there exists complexity for system (1.2) including
periodic doubling cascade, periodic windows, periodic halving cascade. When
impulsive period τ is small, there exists quasiperiodic oscillation in impulsive
system. All these results show that dynamical behavior of system (1.2) becomes
more complex under periodically impulsive inputting substrate.
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